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Abstract

We define and compute the renormalized four-momentum of the composed physical system:
classical Maxwell field interacting with charged point particles. As a ‘reference’ configuration
for the field surrounding the particle, we take the Born solution. Unlike in the previous approach
[Commun. Math. Phys. 198 (1998) 711; Gen. Relat. Grav. 26 (1994) 167; Acta Phys. Pol. A 85
(1994) 771], based on the Coulomb ‘reference’, a dependence of the four-momentum of the particle
(‘dressed’ with the Born solution) upon its acceleration arises in a natural way. This will change
the resulting equations of motion. Similarly, we treat the angular momentum tensor of the system.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Classical, relativistic electrodynamics is unable to describe interaction between charged
particles, intermediated by electromagnetic field. Indeed, typical well posed problems of
the theory are of the contradictory nature: either we may solve partial differential equations
for the field, with particle trajectories providing sources (given a priori!), or we may solve
ordinary differential equations for the trajectories of test particles, with fields providing
forces (given a priori!). Combining these two procedures into a single theory leads to
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a contradiction: Lorentz force due to self-interaction is infinite in case of a point particle.
Replacing point particle by an extended object is not a good remedy for this disease because
it requires a field-theoretical description of the interior of the particle (rigid spheres do not
exist in relativity!). This means that the three degrees of freedom of the particle must be
replaced by an infinite number of degrees of freedom of the matter fields constituting the
particle. Moreover, a highly nonlinear model for the interaction of these fields must be
chosen in order to assure the stability of such an object. As a consequence, there is no hope
for an effective theory.

There were many attempts to overcome these difficulties. One of them consists in using the
Lorentz–Dirac equation, see[2,4,9]. Here, an effective force by which the retarded solution
computed for a given particle trajectory acts on that particle is postulated (the remaining
field is finite and acts by the usual Lorentz force). Unfortunately, this equation has many
drawbacks (cf. Section 8 of[5]). See also[12] for another approach to this problem.

In papers[3,5] a mathematically consistent theory of the physical system “particle(s) +
fields” was proposed, which overcomes most of the above difficulties even if some prob-
lems still remain. The theory may be defined as follows. We consider a system consisting
of charged point particles and the electromagnetic fieldfµν. We always assume that the
latter fulfils Maxwell equations with Dirac “delta-like” currents defined uniquely by the
particle trajectories. Given such a system, we are able to define its total “renormalized
four-momentum”. For a generic choice of fields and particle trajectories this quantityis not
conserved. Its conservation is an additional condition which we impose on the system. It
provides us the missing “equations of motion” for the trajectories and makes the system
mathematically closed (cf.[3]).

Definition of the renormalized four-momentum of the system composed of fields and
particles, proposed in[5], was based on the following reasoning. Outside of the particles,
the contribution to the total four-momentum carried by the Maxwell fieldfµν is given by
integrals of the Maxwell energy–momentum tensor-density

Tµν = Tµν(f ) = √−g(fµλf ν
λ − 1

4g
µνf κλfκλ) (1)

over a space-like hypersurfaceΣ (the notation is prepared for working in curvilinear coor-
dinates). Unfortunately, the total integral of this quantity is divergent because of the field
singularities at the particle’s positions. The idea proposed in[5] is to consider for each par-
ticle a fictitious “reference particle” which moves uniformly along a straight line tangent to
the trajectory of the real particle at the point of intersection withΣ. The constant velocityu
of this hypothetical particle is thus equal to the instantaneous velocity of the real particle at
the point of intersection. Give a label(i) to each of those hypothetical particles and consider
the corresponding Coulomb fieldfC

(i) boosted to velocityu(i). In the rest frame of the(i)th
particle, the magnetic and electric components of this field may be written as

BC
(i) = 0, (DC

(i))
k = e(i)

4π

xk

r3
. (2)

The “reference particle” has the same chargee(i) and the same rest massm(i) as the real
particle. By the mass we mean, however, not the “bare mass”, which must later be “dressed”
with the energy of its Coulomb tail (which always leads to infinities during renormalization
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procedure), but the total energy of the composed system “particle+ field” at rest. Hence,
the total four-momentum of theith reference particle (together with its fieldfC

(i)) equals

pν(i) = m(i)u
ν
(i). (3)

Now, to define the renormalized four-momentumpCν carried by the particles and the field
fµν surrounding them, we split the energy–momentum densityT(f ) into the sum of the
reference densitiesT(fC

(i)) and the remaining term. According to[5], the remaining term is

integrable (more strictly, the principal value of the integral exists), whileT(fC
(i)) terms are

already “taken into account” in the four-momentam(i)u(i) of the particles (computed at the
points of intersection). Hence, the “Coulomb-renormalized four-momentum” of the system
is defined by the following formula:

pCν := P

∫
Σ

[
Tµν(f ) −

∑
i

T µν(fC
(i))

]
dσµ +

∑
i

m(i)u
ν
(i). (4)

It was proved in[5] thatpCν depends onΣ only through the pointsAi of intersection ofΣ
with the trajectories. Next, one postulates thatpCν does not depend on those points. This
condition implies the dynamics of the particles[5] and makes the evolution of the system
unique (cf.[3]).

The above theory is not completely satisfactory, because the subtraction ofT(fC
(i)) in (4)

kills only terms which behave liker−4, while ther−3-terms remain in(4) and are integrated
with r2 dr (for simplicity we assume here thatΣ near the particle corresponds tox0 =
const. in the rest frame). This phenomenon is implied by the analysis of the Maxwell field
behaviour in the vicinity of the particle, cf.(5) or Section 5 of[5]. It leads to logarithmic
divergencies which disappear only due to the principal value signP in front of the integral
(4). That sign means that we first compute the integral overΣ\U, whereU = ∪Ui andUi
is a smallsymmetricneighbourhood of theith particle and then we pass to the limit with
Ui shrinking to the point:Ui → Ai. The symmetry is necessary to kill ther−3-term under
integration because it is anti-symmetric.

The main result of the present paper is a new, improved renormalization procedure, which
does not rely on the symmetry ofUi. We call this new procedure aBorn renormalization,
because the Coulomb reference for a moving particle, matching only its velocity, is here
replaced by the Born solution, matching both the velocity and the acceleration of the particle.

We are going to prove in the sequel, that the four-momentum defined via the Coulomb-
renormalization is a special case of the result obtained via Born-renormalization, while
the physical interpretation of the latter is more natural: all the integrals occurring here
are uniquely defined without any use of the principal value sign. Moreover, the ultra-local
dependence of the four-momentum upon the acceleration of the particle, implied by the Born
renormalization, will change the equations of motion of the particles. That dependence may
be also a key to the instability problem of the theory (with an appropriate dependence of
the involved functions on the acceleration). We prove inSection 6that, disregarding this
dependence, we recover the previous Coulomb-renormalized formulae.

Our results are based on an analysis of the behaviour of the Maxwell field in the vicinity
of the particles done in papers[6,7] (cf. also[2]). Although the asymptotic behaviour of the
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radiation field far away from the sources may be found in any textbook, the “near-field” be-
haviour is less known. The main observation is that—for any choice of particle trajectories—
the difference between the retarded and the advanced solution is bounded (in the vicinity
of the particles). Hence, we restrict our considerations to the fields which differ from the
particle’s retarded (or advanced) field by a term which is bounded in the vicinity of that
particle. We also assume that the field at spatial infinity, i.e. forr → ∞, is at most of the
order ofr−2. Fields fulfilling those requirements are calledregular. In the particle’s rest
frame, regular fields have the following behaviour near the particle (cf. (25) of[5]):

Bk = B̃k, Dk = (Ds)k + D̃k, (Ds)k = e

4π

xk

r3
− e

8πr

(
ai
xixk

r2
+ ak

)
,

(5)

whereB̃, D̃ are bounded andak are the components of the acceleration of the particle.
Above formulae may be proved for the retarded field using Lienard–Wiechert potentials
(cf. [2,6,7])1. Hence, they are valid for all regular fields.

Our paper is organized as follows. InSections 2 and 3we recall and investigate the
Fermi-propagated system of coordinates and the Born solution. InSections 4–7we restrict
ourselves (for simplicity) to the case of a single particle interacting with the field. (A
straightforward generalization of these results to the case of many particles is given in
Section 8. This generalization does not require any new ingredient because interaction
between particles is intermediated via linear Maxwell field.) InSection 4we define the
Born-renormalized four-momentumpBν of the system and prove that it depends on the
hypersurfaceΣ through the point of intersection with the trajectory only. InSection 5we
assume thatΣ near the trajectory coincides with thex0 = const. in the Fermi system which
allows us to find an explicit expression forpBν. In Section 6we comparepBν with the
Coulomb-renormalizedpCν of [5]. The difference of the two is a function of four-velocity
and acceleration at the point of intersection. InSection 7we extend the results ofSections 4–6
to the case of the angular momentum tensor. The fall-off conditions at spatial infinity and
technical details of the proofs are presented inAppendices A and B.

We stress that our approach to renormalization never uses any cancellation procedure
of the type “+∞ − ∞”. Here, everything is finite from the very beginning and the point
particle is understood as a mathematical model, approximating a realistic, physical particle
which is assumed to be extended. To formulate such a model one has to abandon the idea of
a point particle “floating over the field” but rather treat it as a tiny “strong field region” (its
internal dynamics is unknown but, probably, highly nonlinear), surrounded by the “week
field region”, governed by the linear Maxwell theory. The strong field region (particle’s
interior) interacts with the field via its boundary conditions. In other words: the idea to
divide “horizontally” the total energy of the system into: (1) the “true material energy”
+ (2) the free field energy and, finally, (3) the interaction energy which adds to the previous
two contributions, must be rejected from the very beginning. Such a splitting, which is

1 We use this opportunity to correct a missprint in formulae (77)–(79) of[6]: the right-hand sides should be
multiplied byr and the indices belowB on the left-hand sides should be increased by 1. Correct formulae for the
arithmetic mean of the retarded and the advanced fields may be found in[7].
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possible for linear systems, makes no sense in case of a realistic particle. In our approach,
only “vertical” splitting of the energy into contributions contained in disjoint space regions,
separated by a chosen boundary, makes sense because of the locality properties of the theory.

The main advantage of the theory constructed this way is its universality: the final result
does not depend upon a specific structure of the particle’s interior, which we want to ap-
proximate. Moreover (what is even more important!), it does not depend upon a choice of
the hypothetical “boundary” which we have used to separate the strong field region from
the weak field region: the only assumption is that it is small with respect to characteristic
length of the external field.

2. The Fermi-propagated system

In this section we recall and investigate the properties of the Fermi-propagated system
of coordinates. It is a noninertial system such that the particle is at rest at each instant of
time. The use of the Fermi system simplifies considerably description of the field boundary
conditions in the vicinity of the particle, given by(2) and (5). The price we pay for this
simplification is a bit more complicated (with respect to the inertial system) description of
the field dynamics, cf.[5,7].

Let yλ, λ = 0,1,2,3, denote the (Minkowski) spacetime coordinates in a fixed inertial
(‘laboratory’) system. Byfλ = ∂/∂yλ we denote the corresponding orthonormal basis for
the metric tensorη = diag(−,+,+,+). Let qλ(t) = (t, qk(t)) be a particle’s trajectory
andτ = τ(t) be the particle’s proper time. Then dτ/dt = (1 − v2)1/2 wherevk = q̇k (dot
denotes the derivative w.r.t.t). The normalized four-velocity is given by:u = dq/dτ =
((1 − v2)−1/2, (1 − v2)−1/2vk) and the particle’s accelerationa = du/dτ = d2q/dτ2.
Clearly,(u|a) = 0.

We define the rest-frame spaceΣτ as the hyperplane orthogonal to the trajectory (i.e. to
e(0) = u) at q(t). Choose any orthonormal basise(l), l = 1,2,3, inΣτ , such thate(µ) are
positively oriented. Thus(e(α)|e(β)) = ηαβ. Denote bye(l)(t) = (cl(t), d

k
l (t)), l = 1,2,3

the laboratory components of the triad. We define a new system of coordinatesxµ = (τ, xl)

putting yλ = qλ(t) + xleλ(l)(t). This is only a local system, defined in a vicinity of the
trajectory. For fixedτ (or t), y cover the entireΣτ and the particle remains always at the
origin xl = 0. In coordinates(xµ) the metric tensor equalsgµν = (∂/∂xµ|∂/∂xν), where
∂/∂xµ ≡ ∂y/∂xµ. In particular,∂/∂τ = u + xl(de(l)/dτ), ∂/∂xl = e(l). Thusgkl = δkl.
Orthogonality condition(e(l)|u) ≡ 0 implies the following identity:(d/dτ)(e(l)|u) = 0
which means that(de(l)/dτ|u) = −(e(l)|du/dτ) = −(e(l)|a) = −al, whereale(l) = a.

Fermi frame is defined by the following constraint imposed on the triade(l): g0l ≡ Nl = 0.
This implies that de(l)/dτ is proportional tou, de(l)/dτ = alu and determines the prop-
agation ofe(l) uniquely (provided they are given fort = t0) and consistently (one has
(d/dτ)(e(µ)|e(ν)) = 0). This condition implieṡcl = al, ḋkl = vkal. Moreover, one has
∂/∂τ = Ne(0), whereN = 1 + alx

l. Thusg00 = (Ne(0)|Ne(0)) = −N2 (i.e.N is the lapse
function).

In this Fermi-propagated system the fieldf is related to the electric and magnetic fields
by (cf. (5) and (6) of[7])

f 0k = N−1Dk, f kl = εklmBm.
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Sometimes it is more convenient to use nonholonomic field coordinatesf (α)(β), calculated
w.r.t. the tetrade(α). They are related tofµν by fµν = e

µ
(α)e

ν
(β)f

(α)(β) whereµ, ν are taken

w.r.t. (yλ) or, alternatively, w.r.t.(xλ). In the latter case one hasek(l) = δkl , e
k
(0) = e0

(k) = 0,

e0
(0) = N−1, which givesf (0)(k) = Dk, f (k)(l) = εklmBm, like in the laboratory frame. Also

g(α)(β) = (e(α)|e(β)) = ηαβ. ThusT (α)(β) has the same form as in the laboratory:

T (0)(0) = 1
2(D

2 + B2), T (0)(k) = T (k)(0) = (D × B)k,

T (k)(l) = −DkDl − BkBl + 1
2δ

kl(D2 + B2). (6)

We shall use the following

Proposition 1. When integrating overO ⊂ Στ , one can put(in any system of coordinates)

e
µ
(α) dσµ = δα0 dΣ,

wheredΣ is the volume element forΣτ anddσµ are the basic three-volume forms.

Proof. Taking the laboratory frame,eµ(α) dσµ = e
µ
(α)(∂/∂y

µ)
⌋

dy0 ∧ dy1 ∧ dy2 ∧ dy3 =
e(α)

⌋
e(0) ∧ e(1) ∧ e(2) ∧ e(3) equalse(1) ∧ e(2) ∧ e(3) = dΣ for α = 0, but forα �= 0 it

containse(0), hence it vanishes when we integrate overO ⊂ Στ . �

Now consider the laboratory frame. On each hypersurfaceΣτ we introduce coordinates
ỹλ = yλ − qλ(t) = xleλ(l) calculated w.r.t. the particle and we decompose the angular
momentum tensor-density

Mµνλ = yνTµλ − yλTµν (7)

as follows:

Mµνλ = M̃ µνλ + qνTµλ − qλTµν, (8)

M̃
µνλ = ỹνT µλ − ỹλT µν. (9)

HereM̃ computed aty is the angular momentum tensor-density w.r.t. the position of the
particleq(t) such thaty belongs to the hyperplaneΣτ with q(t) at its origin.

Integrating overO ⊂ Στ one may use the nonholonomic coordinatesT (α)(β) (cf.
Proposition 1and(6)):

Tµν dσµ = e
µ
(α)e

ν
(β)T

(α)(β) dσµ = eν(β)T
(0)(β) dΣ,

Tµν dσµ = eν(0)
1
2(D

2 + B2)dΣ + eν(k)(D × B)k dΣ, (10)

M̃
µνλ

dσµ = (xleν(l)e
µ
(α)e

λ
(β)T

(α)(β) − xleλ(l)e
µ
(α)e

ν
(β)T

(α)(β))dσµ

= xl(eν(l)e
λ
(β) − eλ(l)e

ν
(β))T

(0)(β) dΣ,

M̃
µνλ

dσµ = (eν(l)e
λ
(0) − eλ(l)e

ν
(0))x

l 1
2(D

2 + B2)dΣ

+(eν(l)e
λ
(k) − eλ(l)e

ν
(k))x

l(D × B)k dΣ. (11)
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3. The Born solution

Consider a uniformly accelerated particle, i.e.al = const. We have du/dτ = ale(l),
de(l)/dτ = alu, which determines its trajectory (a hyperbola) and its Fermi-propagated sys-
tem uniquely, providedq(0) = 0 and the initial dataal, e(l), u are given. The propagation
may be obtained by action of the one-parameter groupG of proper Lorentz transforma-
tions (boosts) on initial data. The groupG leaves invariant the point−e(l)(0)al/a2, where
a = |a|.

We may use a time-independent 3-rotation frome(l) to a new triadb(l), such that the
accelerationa is proportional to the third axis:ale(l) ≡ a = ab(3). Denote the corresponding
Fermi-propagated coordinates byxl (for e(l)) and byzl (for b(l)). The spherical coordinates
related tozl are calledr, θ, φ. The Born solution of Maxwell equations with a delta-like
source carried by the particle (cf.[9–11], Section 3.3 of[8]) reduces in these coordinates
to the following time-independent expression:

Dr = e

πr2

2 + ar cosθ

(a2r2 + 4 + 4ar cosθ)3/2
, (12)

Dθ = e

πr2

ar sinθ

(a2r2 + 4 + 4ar cosθ)3/2
, (13)

Dφ = Br = Bθ = Bφ = 0. (14)

The electric fieldD is singular not only atr = 0, where it behaves as in(5) with D̃

bounded (cf.[8]), but also forr = 2/a, θ = π. It turns out that the solution describes
two symmetric particles with opposite charges and opposite accelerations. Actually, the
Born solution may be defined as a unique solution of the problem which is invariant with
respect to the symmetry groupG of the problem and satisfies other natural assumptions
(cf. [8,11]).

The Fermi propagation consists in acting with the Lorentz rotations (boosts)g ∈ G on
the hyperplanesΣτ . This action leaves the 2-planep := {N = 0} = {z3 = −1/a} invariant.
The plane splits eachΣτ into two half-hyperplanes. Denote byPτ = {x ∈ Στ : z3 > −1/a}
the one which contains our original particle situated atr = 0.

Assume thatO ⊂ Pτ is a small region around the particle described byr < R(θ, φ)

where the latter is a given function. InSection 5we shall need

Proposition 2.

∫
Pτ\O

1

2
(D2 + B2)dΣ

=
∫
E

e2

2π2r2

sinθ dr dθ dφ

(a2r2 + 4 + 4ar cosθ)2

= e2

2π2

∫
S2

{
1

16R(θ, φ)
+ 1

8
a cosθlog(aR(θ, φ)) + O(R)

}
sinθ dθ dφ, (15)
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whereE = Pτ \O = {(r, θ, φ) : r ≥ R(θ, φ), r cosθ > −1/a} (in spherical coordinates).∫
Pτ\O

zk
1

2
(D2 + B2)dΣ

= e2

32π2

∫
S2

{
−log(aR(θ, φ))

zk

r
+ O(R)

}
sinθ dθ dφ − e2

8π
δ3k. (16)

Proof. By lengthy but standard computations. �

The above result can be reformulated using the following construction. For
G = ∑

k r
kfk(θ, φ) we define its singular partGs = ∑

k r
kfk(θ, φ)1[0,dk ](r) wheredk = 0

for k > −3, dk = 1/a for k = −3, dk = +∞ for k < −3 (1B is a characteristic function
of a setB, i.e. 1B(y) = 0 for y /∈ B, 1B(y) = 1 for y ∈ B). Then (cf.(5))

1

2
[(Ds)2]s = e2

32π2

(
1

r4
− 2a cosθ

r3
1[0,1/a]

)
, (17)

∫
Στ\O

1

2
[(Ds)2]s dΣ

= e2

2π2

∫
S2

{
1

16R(θ, φ)
+ 1

8
a cosθ log(aR(θ, φ))

}
sinθ dθ dφ, (18)

[
1

2
zk(Ds)2

]
s

= e2zk

32π2r4
1[0,1/a], (19)

∫
Στ\O

[
1

2
zk(Ds)2

]
s

dΣ = − e2

32π2

∫
S2

log(aR(θ, φ))
zk

r
sinθ dθ dφ. (20)

4. The Born-renormalized four-momentum

Throughout the paper we assume that the particle has no internal degrees of freedom, i.e.
it is completely characterized by its chargeeand massm. Consider a regular Maxwell fieldf
consistent with the trajectory of the particle (cf.Section 1). We fix a pointA on its trajectory,
corresponding to given values of the proper timeτ, four-velocityu and accelerationa.

Formula(4) for the Coulomb-renormalized four-momentum was based on the following
heuristic picture: A real, physical particle is an extended object, an exact solution of the
complete system: “matter fields+ electromagnetic field”. The reference particle (passing
throughA and moving with the constant four-velocityu) is also an exact, stable solution
of the same system, which, moreover, is static (“soliton-like”). Outside of a certain small
radiusr0 the matter fields vanish and the electromagnetic field reduces to the Coulomb field
fC. Hence, forU which is very small from the macroscopic point of view but still big from
the microscopic point of view (i.e. much bigger than the ballK(A, r0) around the particle),
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the total amount of the four-momentum carried by the soliton solution and contained inU
equals:

pCν(U) = muν −
∫
Στ\U

Tµν(fC)dσµ. (21)

The stability assumption means, that for the real particle surrounded by the fieldf , the
amount of the four-momentum contained inU does not differ considerably from the above
quantity, providedU is very small with respect to the characteristic length off . Together
with the amount of the four-momentum contained outside ofU

pν(Στ \ U) =
∫
Στ\U

Tµν(f )dσµ, (22)

quantity(21)provides, therefore, a good approximation of the total four-momentum of the
“extended particle+ electromagnetic field” system:

pν �
∫
Στ\U

[Tµν(f )dσµ − Tµν(fC)] + muν. (23)

Treating the point particle as an idealization of the extended particle model and applying the
above idea, we may shrinkU to a point, i.e.U→ A, with respect to the macroscopic scale
(but keepingU always very big with respect to the microscopic scaler0). This procedure—in
case of many particles—gives us precisely formula(4).

Now, we assume that also the Born solution has its “extended-particle version”. More
precisely, we assume that the total system: “matter fields+ electromagnetic field”, admits
a stable, stationary (with respect to the one-parameter groupG of boosts) solution, which
coincides with the Born fieldfB outside of a certain small radiusr0 around the particles.
This solution represents a pair of uniformly accelerated particles. Denote byPν(u, a) the
amount of the total four-momentum carried by this solution in the half-hyperplanePτ .
Hence, the amount of the four-momentum contained inU equals:

pBν(U) = Pν(u, a) −
∫
Pτ\U

Tµν(fB)dσµ. (24)

Replacing(21)by (24) in formula(23), we obtain the following approximation for the total
four-momentum:

pν �
∫
Στ\U

Tµν(f )dσµ −
∫
Pτ\U

Tµν(fB)dσµ + Pν(u, a) (25)

=
∫
Στ\O

Tµν(f )dσµ −
∫
Pτ\O

Tµν(fB)dσµ

+
∫
O\U

[Tµν(f ) − Tµν(fB)] dσµ + Pν(u, a), (26)

whereO is a fixed macroscopic neighbourhood of the particle, contained inPτ and contain-
ing U. Again, treating point particle as an idealization of the extended particle model and
applying the above idea, we may pass to the limitU→ A with respect to the macroscopic
scale (but keepingU always very big with respect to the microscopic scaler0). Unlike in the
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Coulomb renormalization, the limit exists without any symmetry assumption aboutU, be-
causeT(f )−T(fB) behaves liker−2 in the vicinity of the particle (due to formulae(5) and
(6) andSection 3). Hence, we obtain the following.

Definition. The renormalized four-momentum of the “point particle+ electromagnetic
field” system is given (in the laboratory system) by

pBν :=
∫
Στ\O

Tµν(f )dσµ −
∫
Pτ\O

Tµν(fB)dσµ

+
∫
O

[Tµν(f ) − Tµν(fB)] dσµ + Pν(u, a). (27)

The Born fieldfB above is computed assuming that the proper timeτ, u, a and e(l) at
A for both particles (real and uniformly accelerated) coincide. Thus they have the same
hyperplaneΣτ passing throughA and the same Fermi coordinatesxl on it.

The right-hand side of(27)does not depend, obviously, upon a choice ofO ⊂ Pτ . On the
grounds of symmetry we must havePν(u, a) = m(a)uν+p(a)aν, wherem(a) andp(a) are
phenomenological functions of one variablea = |a|. We call (27) theBorn-renormalized
four-momentum of the system “point particle+ Maxwell field”.

Unfortunately, the above definition cannot be directly generalized to the case of many
particle system because, in general, there is no common rest-frame spaceΣτ for different
particles. In what follows we shall rewrite the above definition in a way, which admits an
obvious generalization to the case of many particles. For this purpose we replaceΣτ by an
arbitrary space-like hypersurfaceΣ which is flat at infinity. More precisely, one has

Proposition 3. Quantity(27)may be rewritten as follows:

pBν =
∫
Σ\O

Tµν(f )dσµ +
∫
O

[Tµν(f ) − Tµν(fB)] dσµ

−
∫
P\O

Tµν(fB)dσµ + Pν(u, a), (28)

whereΣ, P are any space-like hypersurfaces which coincide along some regionO around
A (we assume thatP has boundary equal top = {z3 = −1/a}, P approximatesPτ at
infinity and thatΣ approximates a space-like hyperplane at infinity) (cf. the figure below).
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Definition. HypersurfaceΣ as inProposition 3is called special ifΣ coincides withΣτ in
a neighbourhood ofA, i.e. if one can takeP = Pτ (cf. the Noether theorem∂µTµν = 0).

Idea of Proof. First letΣ be special (P = Pτ) and chooseO contained inPτ ∩ Σ. Then
the first terms in(27) and (28)coincide (f is a solution of Maxwell equations, we use
Noether theorem) and(28)holds. We can assume that in Fermi coordinatesO = K(A,R),
a ball with a small radiusR. Next we can take anỹΣ, P̃ , Õ as inProposition 3and denote
the corresponding right-hand side of(28) by p̃Bν. We need to provepBν = p̃Bν. Now we
modify the interior ofO, thus replacingO by Õ

′
without changing its boundary, in such a

way that small pieces of̃O
′
andÕ aroundA coincide. It modifiespBν by∣∣∣∣

(∫
O

−
∫
Õ

′

)
[Tµν(f ) − Tµν(fB)] dσµ

∣∣∣∣ ≤ 2
∫ R

0
Cr−2r2 dr = 2CR

(cf. Appendix B,C = const.). Next we replacẽO
′
by its small piece contained iñO. Finally,

we modifyΣ andP outside of that small piece getting̃Σ andP̃ , which does not change
p̃Bν becausef, fB are solutions of the Maxwell equations (cf. the Noether theorem and the
assumption before(5)). ThuspBν for Σ andp̃Bν for Σ̃ differ by a term of orderR. Taking
the limitR → 0, we getp̃Bν = pBν.

5. Explicit formula for the four-momentum

Here we specify the hypersurfaceΣ in (28)to be special (i.e.A ∈ O ⊂ Σ∩Στ),P = Pτ

(cf. Section 4) and choose the spherical coordinates related to a Fermi-propagated system
as inSection 3.

Let U ⊂ O be given byr < R(θ, φ). According to(10), (14) and (15),∫
Pτ\U

Tµν(fB)dσµ

= eν(0)
e2

2π2

∫
S2

{
1

16R(θ, φ)
+ 1

8
a cosθ log(aR(θ, φ)) + O(R)

}
sinθ dθ dφ.

Using(10), (18) and (27), the Born-renormalized four-momentum

pBν =
∫
Σ\O

Tµν(f )dσµ + [eν(λ)K
(λ)(O) + Pν(u, a)], (29)

where

K(0)(O) = lim
U→0

[∫
O\U

1

2
(D2 + B2)dΣ

− e2

2π2

∫
S2

{
1

16R(θ, φ)
+ 1

8
a cosθ log(aR(θ, φ))

}
sinθ dθ dφ

]

=
∫
O

{
1

2
(D2 + B2) − 1

2
[(Ds)2]s

}
dΣ −

∫
Στ\O

1

2
[(Ds)2]s dΣ, (30)
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K(k)(O) =
∫
O
(D × B)k dΣ. (31)

NowO does not need to be insidePτ—only insideΣτ—use(10), (30) and (31).

6. Relation with the Coulomb-renormalization

According to(4) and (28), the difference between Born- and Coulomb-renormalized
four-momentum

pBν − pCν = −muν + Lν,

where

Lν = Pν(u, a) +
∫
Σ\O

Tµν(fC)dσµ + P

∫
O

[Tµν(fC) − Tµν(fB)] dσµ

−
∫
P\O

Tµν(fB)dσµ,

which looks like(28) but with theP sign. Repeating the arguments ofSection 5, we get
for Lν an analogue of(29)–(31), again with theP sign and withD, B replaced byDC, BC.
SettingO = Στ = Σ and using(2) and (17), one obtains

Lν − Pν(u, a) = lim
R→0

∫
Στ\K(R)

{
1

2
(DC)2 − 1

2
[(Ds)2]s

}
dΣ = 0.

Thus one gets

Proposition 4. Coulomb- and Born-renormalization of four-momentum give always the
same result iffPν(u, a) ≡ muν.

7. Born-renormalization of the angular momentum tensor

In analogy with(27)we define the Born-renormalized tensor of angular momentum

MBνλ :=
∫
Σ\O
Mµνλ(f )dσµ +

∫
O

[Mµνλ(f ) −Mµνλ(fB)] dσµ

−
∫
P\O
Mµνλ(fB)dσµ + Mνλ(u, a) + e2

8πa
(uνaλ − uλaν), (32)

whereM was defined in(7), Σ = Στ , P = Pτ .
The above formula renormalizes the field infinity near the particle, leaving opened the

standard convergence problems at spatial infinity (r → ∞). We discuss briefly these issues
in Appendix A. Here, we only mention that these global problems never arise, when the
particle’s equations of motion are derived from the momentum and the angular momentum
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conservation. Indeed, the conservation condition may always be verifiedlocally, i.e. on a
family of hypersurfaces̃Στ which coincide outside of a certain (spatially compact) world
tubeT . Comparing the value of angular momentum calculated on two differentΣ̃τ never
requires integration outside ofT , because the far-away contributions are the same in both
cases.

The last term in(32)could be incorporated intoMνλ(u, a) but for the future convenience
(see remark at the end of this section) it was written separately. The sum of those two
terms can be interpreted as the total angular-momentum of the particle dressed with the
Born field. On the symmetry groundsM(u, a) = (u ∧ a)R(a) + (u ∧ a)∗S(a) (one has
(u ∧ a)νλ = uνaλ −uλaν, (u ∧ a)∗ = (e(0) ∧ ab(3))∗ = ab(1) ∧ b(2), cf. Section 3). Clearly
(32)does not depend on the choice ofO ⊂ P . UsingAppendices A and Band the Noether
theorem∂µMµνλ = 0, one proves(32) for generalΣ, P as inProposition 3.

If we restrict ourselves to special hypersurfaces, then using(11) and (16)and relation
betweenxk andzk onΣτ (Section 3), we get∫

P\U
M̃

µνλ
(fB)dσµ = (eν(l)e

λ
(0) − eλ(l)e

ν
(0))

×
[

e2

32π2

∫
S2

{
−log(aR(θ, φ))

xl

r
+ O(R)

}

× sinθ dθ dφ − e2al

8πa

]
,

whereU is given byr < R(θ, φ). Next, (11), (20) and (32)give (uncontinuous terms of
aλ/a type cancel out!)

MBνλ =
∫
Σ\O
Mµνλ(f )dσµ + (eν(l)e

λ
(ρ) − eλ(l)e

ν
(ρ))L

(l)(ρ)(O)

+[qν(τ)eλ(ρ) − qλ(τ)eν(ρ)]K
(ρ)(O) + Mνλ(u, a), (33)

where

L(l)(0)(O) = lim
U→0

[∫
O\U

1

2
xl(D2+B2)dΣ + e2

32π2

∫
S2

log(aR(θ, φ))
xl

r
sinθ dθ dφ

]

=
∫
O

{
1

2
xl(D2 + B2)−

[
1

2
xl(Ds)2

]
s

}
dΣ −

∫
Στ\O

[
1

2
xl(Ds)2

]
s

dΣ,

(34)

L(l)(k)(O) =
∫
O
xl(D × B)k dΣ. (35)

AgainO does not need to be insideP .
Finally, comparing onΣτ the Born- and Coulomb-renormalization, i.e.

MCνλ = P

∫
Στ

[Mµνλ(f ) −Mµνλ(fC)] dσµ
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(cf. Appendix A), we get thatMBνλ −MCνλ equals(32) for f = fC and theP sign before
the second term. Thus it equals(33)with D,B in (30), (31), (34) and (35)replaced byDC,
BC and theP sign in(30). SettingO = Στ = Σ and using(2) and (19), MBνλ − MCνλ =
Mνλ(u, a). Therefore, both renormalizations give the same result iffMνλ(u, a) = 0. This
equation was the reason to separate the last term in definition (32) fromMνλ(u, a).

8. The case of many particles

Here we extend the results ofSections 4–7to the case of many particles. For theith
particle we fix a pointAi on its trajectory, corresponding to a proper timeτi. The space-like
hypersurfaceΣ passes through allAi. At the beginning we assume that some regions
Oi ⊂ Σ aroundAi are contained inPτi ⊂ Στi corresponding to theith particle and
that, asymptotically,Σ approximates a space-like hyperplane (special hypersurface). The
formula for the Born-renormalized four-momentum generalizes to

pBν =
∫
Σ\∪Oi

T µν(f )dσµ +
∑
i

∫
Oi

[Tµν(f ) − Tµν(fB
(i))] dσµ

−
∑
i

∫
P(i)\Oi

T µν(fB
(i))dσµ +

∑
i

Pν
(i)(u(i), a(i)), (36)

P(i) = Pτi for the ith particle. One proves the analogue ofProposition 3. For the special
hypersurface(29)generalizes to

pBν =
∫
Σ\∪Oi

T µν(f )dσµ +
∑
i

[eν(λ)K
(λ)(Oi) + Pν

(i)(u(i), a(i))], (37)

whereK(λ)(Oi) are given as in(30) and (31)with Ui described byr < R(i)(θ, φ).
The comparison with the Coulomb renormalization gives

pBν − pCν =
∑
i

{−m(i)u
ν
(i) + Lν

(i)},

whereLν
(i) are as inSection 6and the analogue ofProposition 4holds.

The Born-renormalized tensor of angular momentum takes now the form

MBνλ =
∫
Σ\∪Oi

Mµνλ(f )dσµ +
∑
i

∫
Oi

[Mµνλ(f ) −Mµνλ(fB
(i))] dσµ

−
∑
i

∫
P(i)\Oi

Mµνλ(fB
(i))dσµ

+
∑
i

[
Mνλ

(i)(u(i), a(i)) +
e2
(i)

8πa(i)
(u(i) ∧ a(i))νλ

]
. (38)

The analogue ofProposition 3holds. What concerns(33),Σ\O is now replaced byΣ\∪Oi

and one has
∑

i before the remainingi-dependent terms. For a specialΣ one defines the
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Coulomb renormalization

MCνλ = P

∫
Σ

[Mµνλ(f ) −
∑
i

Mµνλ(fC
(i))] dσµ (39)

and shows that the both renormalizations give the same result iffMνλ
(i)(u(i), a(i)) ≡ 0 for

all i.
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Appendix A. Field fall-off conditions at spatial infinity and a possibility to define
global angular momentum

To define the four-momentum of the system, we assume that the field behaves at spatial
infinity (i.e. for r → ∞) like r−2. To define globally the angular momentum of the system,
much stronger fall-off conditions are necessary. Here, we present a possible choice: we
assume that the field behaves at spatial infinity like a superposition of boosted Coulomb
fields (modulor−3-terms). Then (for any space-like hyperplane) the angular momentum
density behaves like an anti-symmetricr−3-term (modulor−4-terms). This is sufficient to
define global value of angular momentum using the “principal value” sign for integration
at infinity. This means that we first integrate over spatially symmetric regionsV ⊂ Σ of
an asymptotically flat hypersurfaceΣ and then pass to the limitV → Σ. The symmetry
depends upon a choice of a central pointx0, but it is easy to check that the final result of such
a proceduredoes notdepend upon this choice. Moreover, the above asymptotic conditions
allow us to changeΣ at infinity. Indeed, the difference between results obtained for different
Σ’s equals to a surface integral at infinity which vanishes as a consequence of the assumed
asymptotic conditions (cf. also[1]). We stress, however, that the renormalization proposed in
the present paper cures the local and not global problems. Derivation of particle’s equations
of motion from field equations does not rely on the global problems.

Appendix B. Approximation by the Born field near the trajectory

Suppose (cf.Section 4) that we have two trajectories: of a real particlep and of the
reference particlẽp, which is uniformly accelerated. Both trajectories touch atA, where
the proper timesτ0, the four-velocitiesu, the accelerationsa ande(l) coincide. In general,
the quantities related tõp differ from those related top and are distinguished by tilde. Then
A ∈ Στ0 = Σ̃τ0, but forH approachingA, one hasH ∈ Στ ∩ Σ̃τ̃ and in generalτ �= τ̃.
Denote byr (r̃) the radius ofH w.r.t.Στ (Σ̃τ̃). One has

Proposition A.1. Suppose thatH belongs to a region of space-like directions w.r.t.A,which
is separated from the light cone atA and thatH approachesA. Then
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(1) r/r̃, r̃/r ∼ 1,
(2) Tµν(f ) − Tµν(fB) ∼ r−2,
(3) Mµνλ(f ) −Mµνλ(fB) ∼ r−2,

wheref is a Maxwell field related top, fB is the Born solution related tõp.

Idea of Proof. We may setτ0 = 0, q(0) = 0, u(0) = (1,0,0,0), a(0) = ã(0). One
has=a(τ) ≡ a(τ) − ã(τ) ∼ τ, =u(τ) ∼ τ2, =q(τ) ∼ τ3, the angle betweenΣτ andΣ̃τ̃

is of orderτ2. Denoting by�F the difference ofF computed forH w.r.t. Στ and w.r.t.
Σ̃τ̃ and using geometric considerations, we getτ ≤ Cr, �τ ∼ r3, �xk ∼ r3, �r ∼ r3,
r̃/r − 1 = �r/r ∼ r2, (1) follows. UsingTµν = e

µ
(α)e

ν
(β)T

(α)(β), (5) and (6), one gets

Tµν ∼ e
µ
(α)e

ν
(β)(r

−2 + ar−1 + C)2 ∼ r−4, �(deµ(α)/dτ) ∼ �a ∼ τ, �e
µ
(α) ∼ τ2 ∼ r2,

�r−2 ∼ r−3 �r ∼ 1, �a ∼ r, �r−1 ∼ r−2 �r ∼ r, �T ∼ r−2, (2) holds. Moreover,

�qλ = =qλ + q̃λ(τ) − q̃λ(τ̃) ∼ τ3 + r3 ∼ r3,

�yλ = �qλ + xl �eλ(l) + (�xl)eλ(l) ∼ r3 + r · r2 + r3 · 1 ∼ r3,

�Mµνλ = yν�Tµλ + (�yν)Tµλ − (λ ↔ µ) ∼ 1 · r−2 + r3 · r−4 ∼ r−2,

(3) follows.
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